### Refine

#### Departments, institutes and facilities

#### Document Type

- Article (13)
- Preprint (4)
- Part of a Book (2)
- Conference Object (2)
- Doctoral Thesis (1)

#### Keywords

- High-performance computing (2)
- Molecular modeling (2)
- Numerical optimization (2)
- Semi-Lagrangian (2)
- Adams-Moulton (1)
- Automatic Differentiation (1)
- Automation (1)
- BDF (1)
- Compressible (1)
- Compressible flows (1)

#### Version

- publishedVersion (3)
- submittedVersion (2)

The paper describes methods for calculating chemical equilibria based on a constrained Gibbs free energy minimization. The methods allow the treatment of multicomponent systems with multiple phases, including gaseous phases, condensed phases, and stoichiometric phases. A special aspect is the detection and treatment of miscibility gaps. The underlying mathematical problem is described in detail together with the algorithmic approach for its solution. Results are presented for some test cases, including the computation of phase diagrams for ternary systems.

Automated parameterization of intermolecular pair potentials using global optimization techniques
(2014)

In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters’ influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.

Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies
(2018)

In dieser Arbeit werden neuartige methodische Erweiterungen der Lattice-Boltzmann-Methode (LBM) entwickelt, die effizientere Simulationen inkompressibler Wirbelströmungen ermöglichen. Diese Erweiterungen beheben zwei Hauptprobleme der Standard-LBM: ihre Instabilität in unteraufgelösten turbulenten Simulationen und ihre Beschränkung auf reguläre Rechengitter. Dazu wird zunächst eine Pseudo-Entropische Stabilisierung (PES) entwickelt. Diese kombiniert Ansätze der Multiple-Relaxation-Time (MRT)-Modelle und der Entropischen LBM zu einem expliziten, lokalen und flexiblen Stabilisierungsoperator. Diese Modifikation des Kollisionsschritts erlaubt selbst auf stark unteraufgelösten Gittern stabile und qualitativ korrekte Simulationen. Zur Erweiterung der LBM auf irreguläre Rechengitter wird zunächst eine moderne Discontinuous-Galerkin-LBM untersucht und um stabilere Zeitintegratoren ergänzt. Diese Studie demonstriert die drastischen Schwächen existierender LBMAnsätze auf irregulären Gittern. Basierend auf den gewonnenen Erkenntnissen gelingt die Formulierung einer neuartigen Semi-Lagrangeschen LBM (SLLBM). Diese ermöglicht in einzigartigerWeise sowohl die Verwendung irregulärer Gitter und großer Zeitschritte als auch eine hohe räumliche Konvergenzordnung. Anhand von Beispielsimulationen wird demonstriert, wieso dieser Ansatz anderen aktuellen Off-Lattice-Boltzmann-Methoden (OLBMs) in Effizienz und Genauigkeit überlegen ist. Weitere neuartige Aspekte dieser Arbeit sind die Entwicklung eines modularen Off-Lattice-Boltzmann-Codes und die Erweiterung der LBM um implizite Mehrschrittverfahren, mit denen eine Erhöhung der zeitlichen Konvergenzordnung gelingt.

This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method , the method operates in a static, non-moving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to non-uniform grids.

This work introduces a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows (with or without discontinuities). It makes use of a cell-wise representation of the simulation domain and utilizes interpolation polynomials up to fourth order to conduct the streaming step. The SLLBM solver allows for an independent time step size due to the absence of a time integrator and for the use of unusual velocity sets, like a D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the proposed model are shown in diverse example simulations of a Sod shock tube, a two-dimensional Riemann problem and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to non-uniform grids.

Turbulent compressible flows are traditionally simulated using explicit Eulerian time integration applied to the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which elegantly circumvents this restriction. Previous lattice Boltzmann methods for compressible flows were mostly restricted to two dimensions due to the enormous number of discrete velocities needed in three dimensions. In contrast, this Rapid Communication demonstrates how cubature rules enhance the SLLBM to yield a three-dimensional velocity set with only 45 discrete velocities. Based on simulations of a compressible Taylor-Green vortex we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques, even when the time step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers for the first time to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time step sizes is only dictated by physics, while being decoupled from the spatial discretization.

Off-lattice Boltzmann methods increase the flexibility and applicability of lattice Boltzmann methods by decoupling the discretizations of time, space, and particle velocities. However, the velocity sets that are mostly used in off-lattice Boltzmann simulations were originally tailored to on-lattice Boltzmann methods. In this contribution, we show how the accuracy and efficiency of weakly and fully compressible semi-Lagrangian off-lattice Boltzmann simulations is increased by velocity sets derived from cubature rules, i.e. multivariate quadratures, which have not been produced by the Gauss-product rule. In particular, simulations of 2D shock-vortex interactions indicate that the cubature-derived degree-nine D2Q19 velocity set is capable to replace the Gauss-product rule-derived D2Q25. Likewise, the degree-five velocity sets D3Q13 and D3Q21, as well as a degree-seven D3V27 velocity set were successfully tested for 3D Taylor-Green vortex flows to challenge and surpass the quality of the customary D3Q27 velocity set. In compressible 3D Taylor-Green vortex flows with Mach numbers Ma={0.5;1.0;1.5;2.0} on-lattice simulations with velocity sets D3Q103 and D3V107 showed only limited stability, while the off-lattice degree-nine D3Q45 velocity set accurately reproduced the kinetic energy provided by literature.

Off-lattice Boltzmann methods increase the flexibility and applicability of lattice Boltzmann methods by decoupling the discretizations of time, space, and particle velocities. However, the velocity sets that are mostly used in off-lattice Boltzmann simulations were originally tailored to on-lattice Boltzmann methods. In this contribution, we show how the accuracy and efficiency of weakly and fully compressible semi-Lagrangian off-lattice Boltzmann simulations is increased by velocity sets derived from cubature rules, i.e. multivariate quadratures, which have not been produced by the Gauß-product rule. In particular, simulations of 2D shock-vortex interactions indicate that the cubature-derived degree-nine D2Q19 velocity set is capable to replace the Gauß-product rule-derived D2Q25. Likewise, the degree-five velocity sets D3Q13 and D3Q21, as well as a degree-seven D3V27 velocity set were successfully tested for 3D Taylor–Green vortex flows to challenge and surpass the quality of the customary D3Q27 velocity set. In compressible 3D Taylor–Green vortex flows with Mach numbers on-lattice simulations with velocity sets D3Q103 and D3V107 showed only limited stability, while the off-lattice degree-nine D3Q45 velocity set accurately reproduced the kinetic energy provided by literature.

The lattice Boltzmann method (LBM) is an efficient simulation technique for computational fluid mechanics and beyond. It is based on a simple stream-and-collide algorithm on Cartesian grids, which is easily compatible with modern machine learning architectures. While it is becoming increasingly clear that deep learning can provide a decisive stimulus for classical simulation techniques, recent studies have not addressed possible connections between machine learning and LBM. Here, we introduce Lettuce, a PyTorch-based LBM code with a threefold aim. Lettuce enables GPU accelerated calculations with minimal source code, facilitates rapid prototyping of LBM models, and enables integrating LBM simulations with PyTorch's deep learning and automatic differentiation facility. As a proof of concept for combining machine learning with the LBM, a neural collision model is developed, trained on a doubly periodic shear layer and then transferred to a different flow, a decaying turbulence. We also exemplify the added benefit of PyTorch's automatic differentiation framework in flow control and optimization. To this end, the spectrum of a forced isotropic turbulence is maintained without further constraining the velocity field.

Turbulent compressible flows are traditionally simulated using explicit time integrators applied to discretized versions of the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time-step size. Exploiting the Lagrangian nature of the Boltzmann equation’s material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which circumvents this restriction. While many lattice Boltzmann methods for compressible flows were restricted to two dimensions due to the enormous number of discrete velocities in three dimensions, the SLLBM uses only 45 discrete velocities. Based on compressible Taylor-Green vortex simulations we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques other than the filtering introduced by the interpolation, even when the time-step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time-step sizes is dictated by physics rather than spatial discretization.