Technology

Neuromorphic Memory Device replicates Neurons and Synapses

Neuromorphic Memory Device replicates Neurons and Synapses

Neuromorphic memory devices are a type of computer memory that are designed to simulate the behavior of neurons and synapses, which are the basic building blocks of the human brain. These devices are often based on a technology called memristors, which are electronic components that can change their resistance in response to an electrical signal. By programming the memristors to behave like neurons and synapses, researchers are able to create a memory device that can learn and process information in a way that is similar to the human brain.

Researchers have reported a nano-sized neuromorphic memory device that emulates neurons and synapses simultaneously in a unit cell, another step toward completing the goal of neuromorphic computing designed to rigorously mimic the human brain with semiconductor devices.

Neuromorphic computing aims to realize artificial intelligence (AI) by mimicking the mechanisms of neurons and synapses that make up the human brain. Inspired by the cognitive functions of the human brain that current computers cannot provide, neuromorphic devices have been widely investigated. However, current Complementary Metal-Oxide Semiconductor (CMOS)-based neuromorphic circuits simply connect artificial neurons and synapses without synergistic interactions, and the concomitant implementation of neurons and synapses still remains a challenge.

Neurons and synapses interact with each other to establish cognitive functions such as memory and learning, so simulating both is an essential element for brain-inspired artificial intelligence. The developed neuromorphic memory device also mimics the retraining effect that allows quick learning of the forgotten information by implementing a positive feedback effect between neurons and synapses.

Professor Keon Jae Lee

Professor Keon Jae Lee

To address these issues, a research team led by Professor Keon Jae Lee from the Department of Materials Science and Engineering implemented the biological working mechanisms of humans by introducing the neuron-synapse interactions in a single memory cell, rather than the conventional approach of electrically connecting artificial neuronal and synaptic devices.

Similar to commercial graphics cards, the artificial synaptic devices previously studied often used to accelerate parallel computations, which shows clear differences from the operational mechanisms of the human brain. The research team implemented the synergistic interactions between neurons and synapses in the neuromorphic memory device, emulating the mechanisms of the biological neural network. In addition, the developed neuromorphic device can replace complex CMOS neuron circuits with a single device, providing high scalability and cost efficiency.

Neuromorphic memory device simulates neurons and synapses
Neuromorphic memory device simulates neurons and synapses

The human brain consists of a complex network of 100 billion neurons and 100 trillion synapses. The functions and structures of neurons and synapses can flexibly change according to the external stimuli, adapting to the surrounding environment.

The research team developed a neuromorphic device in which short-term and long-term memories coexist using volatile and non-volatile memory devices that mimic the characteristics of neurons and synapses, respectively. A threshold switch device is used as volatile memory and phase-change memory is used as a non-volatile device. Two thin-film devices are integrated without intermediate electrodes, implementing the functional adaptability of neurons and synapses in the neuromorphic memory.

Professor Keon Jae Lee explained, “Neurons and synapses interact with each other to establish cognitive functions such as memory and learning, so simulating both is an essential element for brain-inspired artificial intelligence. The developed neuromorphic memory device also mimics the retraining effect that allows quick learning of the forgotten information by implementing a positive feedback effect between neurons and synapses.”

Neuromorphic memory devices have the potential to revolutionize the field of artificial intelligence, as they could enable the development of more efficient and powerful neural networks that can perform complex tasks such as image recognition and natural language processing with greater accuracy and speed. Additionally, they could also be used to develop brain-computer interfaces that allow humans to control machines with their thoughts, or even to repair damaged neural circuits in the brain.